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Abstract
We propose a set of maximized string order parameters to describe the hidden
topological order in the valence bond solid states of quantum integer spin-S
chains. These optimized string order parameters involve spin-twist angles
corresponding to ZS+1 rotations around z or x-axes, suggesting a hidden
ZS+1 × ZS+1 symmetry. Our results also suggest that a local triplet excitation
in the valence bond solid states carries a ZS+1 topological charge measured by
these maximized string order parameters.

PACS numbers: 03.67.−a, 75.10.Pq, 64.70.Tg, 75.10.Jm

(Some figures in this article are in colour only in the electronic version)

Determining order parameters is one of the most important issues in the study of
strongly correlated systems. It is the basis of Landau theory in describing continuous phase
transitions between different phases with spontaneous symmetry breaking. However, some
novel phenomena or phases, for example, the fractional quantum Hall states and the Haldane
gap phenomena in quantum integer-spin chains, are not amenable to such a description.
In particular, to find an order parameter in a system with strong frustrations or quantum
fluctuations is challenging and highly nontrivial [1, 2].

For quantum integer-spin antiferromagnetic Heisenberg chains, Haldane predicted that
there is a finite excitation gap above the ground state [3]. To understand this intriguing
conjecture, Affleck, Kennedy, Lieb and Tasaki (AKLT) proposed a set of exactly solvable
quantum spin models whose ground states are the valence bond solid (VBS) states [4]. In the
S = 1 VBS state, there is a hidden antiferromagnetic order which can be characterized by
string order parameters (SOPs) [5]. Corresponding to this nonlocal string order, Kennedy and
Tasaki showed that there is a hidden Z2 × Z2 symmetry [6]. To reveal this symmetry clearly,
they introduced a nonlocal unitary transformation to convert the VBS state to a ‘diluted’
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ferromagnetic state and showed that the ground state is four-fold degenerate if this symmetry
is broken in an open chain.

For quantum integer-spin chains with S > 1, it is extremely difficult to find the
corresponding nonlocal unitary transformation to convert the VBS state into a long-range
ordered state. So far no one has succeeded along this direction. However, this is not the
only approach for revealing a hidden topological symmetry. This hidden symmetry can also
be identified from the non-local string order parameters of the ground state. So the extended
SOPs with a twist angle θ = π/S were proposed to account for the hidden order in the VBS
states [7, 8]. Actually, this kind of extended SOPs does not give a comprehensive description
to the Haldane phase in these systems [9]. Recently, we have extended the S = 1 VBS (which
is SO(3) invariant) to the SO(2n + 1) symmetric system [10]. We find that these SO(2n + 1)

symmetric matrix product states are the exact ground states of Hamiltonians of spin S = n

with either SO(2n + 1) or SU(2) symmetry. Furthermore, we show that this system possesses
a hidden topological (Z2 × Z2)

n symmetry and the ground state can be characterized by n-set
of hidden antiferromagnetic orders. This study suggests that the topological order is generally
more complicated than the θ -twisted SOP as previously studied in the VBS states. It motivates
us to consider how to find proper SOPs to characterize the hidden topological order in the
higher integer-spin VBS states [11].

In this paper, we will propose a systematical method to find the optimized SOPs in the VBS
states. By generalizing the S = 1 den Nijs–Rommelse SOP to arbitrary integer spin-S VBS
states, the corresponding hidden long-range order can be most comprehensively manifested
by the maximal string correlation functions between two polynomial spin operators

Aα
j =

S∑
n=0

an

(
Sα

j

)n
(α = x, y, z), (1)

where an are the coefficients which maximize the string correlation function. We find that these
maximized SOPs suggest a hidden ZS+1 × ZS+1 symmetry, in consistent with the degeneracy
of the ground states in an open chain case. Moreover, our optimized SOPs measure a ZS+1

topological charge carried by a localized triplet excitation in the VBS state.
The AKLT Hamiltonian is defined by [4, 12]

HAKLT =
∑

i

2S∑
J=S+1

KJPJ (i, i + 1), (2)

where KJ > 0 and PJ (i, i +1) is to project two spins at i and i +1 onto the subspace of the total
spin J . This Hamiltonian can be written as a polynomial of SU(2) invariant nearest-neighbor
spin exchange interactions. The VBS state is the ground state of this Hamiltonian.

In the Schwinger boson representation, the spin operators are expressed by S+
i =

a
†
i bi, S

−
i = b

†
i ai, S

z
i = (

a
†
i ai − b

†
i bi

)/
2 with a local constraint a

†
i ai + b

†
i bi = 2S. The

VBS state in a length-L periodic chain is then given by

|VBS〉 =
L∏

i=1

(
a
†
i b

†
i+1 − b

†
i a

†
i+1

)S |vac〉. (3)

In an open chain, the VBS states have effectively two spin-S/2 edge states at the two ends of
the chain. In the thermodynamic limit, L → ∞, the VBS states with different edge states are
asymptotically orthogonal to each other, giving rise to (S + 1)2-fold degenerate ground states.
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The VBS state can also be represented in a matrix product form [8, 13, 14]. By using the
binomial theorem, it can be shown that

|VBS〉 =
S∑

{mi }=−S

Tr (B[m1] · · · B[mL])|m1 · · · mL〉, (4)

where B[m] is a (S + 1) × (S + 1) matrix defined by its matrix elements as

B[m](p, q) = (−1)S−p+1
√

(S + m)!(S − m)!

√(
S

p − 1

) (
S

q − 1

)
δm,q−p, (5)

where 1 � p, q � S + 1.

The correlation function of the VBS state in the matrix product form can be evaluated
using the transfer matrix method [8, 14]. To do this, let us first introduce the following
(S + 1)2 × (S + 1)2 transfer matrix:

GP =
∑
m,m′

〈m′|P̂ |m〉(B̄[m′] ⊗ B[m]), (6)

where P̂ is a local operator acting on a single site and B̄ denotes the complex conjugate of B.
For the identity operator P̂ = I,GP is a Hermitian transfer matrix G = ∑

m(B̄ [m] ⊗ B[m]).
With these definitions, it is straightforward to show that the two-point spin correlation function
can be expressed as

〈
Sz

i S
z
j

〉 = lim
L→∞

Tr [(G)L−j+i−1GS(G)j−i−1GS]

Tr(G)L
, (7)

where

GS =
∑
m

m(B̄[m] ⊗ B[m]).

In the long distance limit, the two-point spin correlation function always decays exponentially
with the distance between the sites i and j ,〈

Sz
i S

z
j

〉 ∼ exp

(
−|j − i|

ξ

)
, (8)

where ξ = 1/ ln(1 + 2/S) is the correlation length [12].
In order to describe the hidden topological order in the VBS states, let us introduce the

following generalized string correlation function [8]:

Oα
A(θ) = lim

|j−i|→∞

〈(
Aα

i

)† j−1∏
k=i

eiθSα
k Aα

j

〉
, (9)

where Aα
j is defined by equation (1). The value of a0 in Aα

j can be fixed by demanding the

expectation value of Aα
j to be zero, i.e., a0 = −∑S

n=1 an

〈(
Sα

j

)n〉
.

Since the VBS state is spin SU(2) rotational invariant, we need only to evaluate the
z-component of the string correlation function Oz

A(θ). Based on the transfer matrix technique,
it can be shown that

Oz
A(θ) = lim

|j−i|→∞
lim

L→∞
Tr [(G)L−j+i−1GA†(GO)j−i−1GA]

Tr(G)L
, (10)

where GO,GA† and GA are obtained by replacing operator P̂ in equation (6) by
exp(iθSz), (Az)† exp(iθSz) and Az, respectively. We emphasize that only G and GO are
Hermitian, while GA† and GA are not.
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In the limit of |j − i| → ∞ and L → ∞,Oz
A(θ) is determined purely by the largest

eigenvalues and eigenvectors of G and GO. We find that equation (10) can be simplified as

Oz
A(θ) = 1

λ2
max

∣∣〈λO
max

∣∣GA

∣∣λmax
〉∣∣2

, (11)

where |λmax〉 and
∣∣λO

max

〉
are the eigenvectors corresponding to the same largest eigenvalue of

G and GO, respectively.
When θ = 0,Oz

A(θ) becomes the ordinary two-point correlation function. It vanishes
because |λO

max〉 = |λmax〉 for θ = 0 and the vector GA|λmax〉 is orthogonal to |λmax〉. If we fix
the form of the operator Az and tune the spin-twist angle θ,Oz

A(θ) will reach its maximum
only when the vector GA|λmax〉 is parallel to the vector

∣∣λO
max

〉
. This means that in order to

maximize the SOP, |λO
max〉 is orthogonal to |λmax〉, i.e.,

〈
λO

max|λmax
〉 = 0. For the VBS state,

the eigenvectors |λmax〉 and |λO
max〉 can be readily calculated, we find that the orthogonality

condition can be satisfied if and only if the following equation is satisfied:

1 + eiθ + ei2θ + · · · + eiSθ = 0. (12)

Thus, the spin-twist angle corresponding to the maximal SOP is determined by

θ = 2nπ

S + 1
, (n = 1, . . . , S). (13)

Importantly, these spin-twist angles correspond to a discrete symmetry group ZS+1. Because
of the spin SU(2) rotational symmetry, a similar maximal SOP can be found in terms of the
x-component operators Ox

A(θ). The spin-twist angles corresponding to the maximal Ox
A(θ)

are also given by equation (13).
In the conventional Landau theory, it is well known that the maximized order parameters

fully characterize the symmetry of the low-temperature ordered phases, and these order
parameters can also be used to describe the possible phase transitions as decreasing the
temperature from the high-temperature disordered phases. When we generalize the similar
rule to the present case, the maximal SOPs fully describe the hidden long-range order of the
spin-S VBS states, suggesting that there exists a hidden ZS+1 ×ZS+1 symmetry. In a finite open
chain, this hidden ZS+1 × ZS+1 symmetry is broken in the ground states, leading to the spin- S

2
edge states with (S + 1)2-fold degeneracy. We would like to emphasize that these spin- S

2 edge
states are dictated by the underlying low-energy effective field theory, i.e., O(3) nonlinear
sigma model plus a topological term [15]. Moreover, the hidden ZS+1 × ZS+1 symmetry also
incorporates the previous results given by Oshikawa [7]. For an odd integer S chain, the
ZS+1 group has always a Z2 subgroup with θ = π . However, for an even integer S chain, a
twist angle θ = π is always absent. This result explains why the hidden Z2 × Z2 symmetry
described by the den Nijs–Rommelse SOP is broken in the odd-S VBS states but not in the
even-S ones [7].

Let us consider the hidden topological symmetries in the first few cases of the spin-S VBS
states. For the S = 1 VBS state, we have Az

j = Sz
j . The maximal eigenvalues of the transfer

matrices G and GO are equal to λmax = 3, and their eigenvectors are given by

|λmax〉 = 1√
2
(1 0 0 1)T ,

∣∣λO
max

〉 = 1√
2
(eiθ 0 0 1)T ,

respectively. With a simple calculation, it can be shown that Oz
A(θ) = (4/9) sin2(θ/2), from

which its maximal value corresponds to θ = π . This result is fully consistent with the
orthogonality condition. According to the nonlocal unitary transformation, the corresponding
VBS state does exhibits a Z2 × Z2 topological symmetry. Therefore, it is a reliable method of
using the maximal SOPs to reveal the hidden symmetry.
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Next let us consider the S = 2 VBS state, the maximal eigenvalues of the transfer matrices
G and GO is λmax = 40 and the corresponding eigenvectors are given by

|λmax〉 = 1√
3
(1 0 0 0 1 0 0 0 1)T ,∣∣λO

max

〉 = 1√
3
(e2iθ 0 0 0 eiθ 0 0 0 1)T .

When θ = 2π/3 or θ = 4π/3, the SOP (9) is maximal. From the condition that GA|λmax〉
is parallel to

∣∣λO
max

〉
, we can find the corresponding optimal operators displaying the maximal

string correlation function as the form

Az
j = Sz

j ± 5
√

3i

7

[(
Sz

j

)2 − 2
]
, (14)

for θ = 2π/3 and θ = 4π/3, respectively. The maximal value of the SOPs is Oz
A(θ) = 3.

In this nontrivial case, it is the linear combination of spin operator Sz
j and its spin quadrupole

operator
(
Sz

j

)2 − 2 that exhibits the maximal hidden string order instead of the spin operator
itself. The hidden topological symmetry in the S = 2 VBS state corresponds to the Z3 × Z3

discrete symmetry.
For the S = 3 case, the spin-twist angles for the maximal SOPs are determined by

θ = π/2, π , 3π/2 from the orthogonality condition. Similar to the previous procedure, it is
straightforward to show that the corresponding combinations of the spin operators are given
by

Az
j = Sz

j ± 15i

67

[(
Sz

j

)2 − 4
] − 7

67

(
Sz

j

)3
(15)

for θ = π/2 or 3π/2, and

Az
j = 89

√
2

67

[
Sz

j − 14

89

(
Sz

j

)3
]

(16)

for θ = π . The maximal value of the SOPs is Oz
A(θ) = 2592/4489, and the corresponding

hidden symmetry is Z4 × Z4.
Accordingly, the above discussions can be readily extended to any higher integer spin-S

VBS states. In addition to the VBS states, it can also be generalized to reveal the possible
hidden topological order of arbitrary matrix product states. Thus, this is a systematic approach
to analyze the hidden topological symmetry of matrix product states.

In fact, the topological property of the ground state can also be understood from its
elementary excitations. For the AKLT model, to create an elementary excitation is to insert
a triplet defect in the VBS ground state. This kind of excitation is called crackion [16].
Under the Kennedy–Tasaki unitary transformation for S = 1, a crackion is a kink linking
two ferromagnetic ordered ground states from left to right. In higher-S systems, although the
Kennedy–Tasaki unitary transformation does not transfer the VBS state to a ferromagnetic
one, the kink or soliton-like feature of crackion can still be revealed by studying the string
correlation function in the presence of a triplet defect [8]. An example of a crackion in the
S = 2 VBS state is depicted in figure 1.

With the Schwinger boson representation, the wavefunction of a localized crackion
between k and k + 1 sites can be constructed by replacing a singlet

(
a
†
kb

†
k+1 − b

†
ka

†
k+1

)
with one

of the triplet operators T a

T 1 = a
†
ka

†
k+1, T 0 = a

†
kb

†
k+1 + b

†
ka

†
k+1, T −1 = b

†
kb

†
k+1.

The corresponding matrix product wavefunctions for these excitations are∣∣ψa
k

〉 =
∑
{mi }

Tr(B[m1] · · · C[mk ]
a · · ·B[mL])|m1 · · ·mL〉, (17)
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Figure 1. The schematic of a crackion excitation in a spin-2 VBS state. The solid lines represent
the valence bond singlets. A dot represents a spin-1/2 Schwinger boson. The four bosons enclosed
by each dashed circle form a spin-2 state. The arrow represents a crackion of local triplet defect.

where C[m]
a is defined by⎛

⎜⎝C
[m]
1 (p, q)

C
[m]
0 (p, q)

C
[m]
−1 (p, q)

⎞
⎟⎠ = 1

S
(−1)S−p

√
(S + m)!(S − m)!

×
√(

S

p − 1

) (
S

q − 1

) ⎛
⎝(S − q + 1) δm,q−p+1

(S − 2q + 2) δm,q−p

(1 − q) δm,q−p−1

⎞
⎠ .

For one crackion in the string, it can be shown that the SOP in the thermodynamic limit
is given by

lim
|j−i|→∞

〈(
Az

i

)† j−1∏
k=i

eiθSz
k Az

j

〉
cr

= Oz
A(θ)

〈
λO

max

∣∣Ga
O
∣∣λO

max

〉
〈λmax|Ga|λmax〉 , (18)

where Oz
A(θ) is the maximized string order parameter without crackions. When replacing

operator P̂ by exp(iθSz) and I in the following crackion transfer matrix:

Ga
P =

∑
m,m′

〈m′|P̂ |m〉(C̄[m′]
a ⊗ C[m]

a

)
, (19)

one obtains Ga
O and Ga , respectively. From these definitions, one can show that the ratio

between
〈
λO

max

∣∣Ga
O
∣∣λO

max

〉
and 〈λmax|Ga|λmax〉 is equal to exp (iaθ) (a = ±1, 0) for the three

kinds of crackions. If there are a few diluted crackions between i and j , the above result can
be extended to

lim
|j−i|→∞

〈(
Az

i

)† j−1∏
k=i

eiθSz
k Az

j

〉
cr

= Oz
A(θ) exp

(
iθ

j∑
k=i

ak

)
, (20)

where the phase factor exp(iθ
∑j

k=i ak) counts the total number of crackions between i and j .
For the S = 1 VBS state, we have θ = π and the SOP alternates its sign according

to the parity of
∑j

k=i ak , which can be interpreted as a Z2 topological charge [8]. If we
consider the SOP in the x-direction, a crackion with a = 0 also flips the sign. In a general spin-S
case, the spin-twist angle of the maximized SOP is given by θ = 2πn/(S + 1) (n = 1, . . . , S).
Our optimized SOP suggests that the crackion carries a ZS+1 topological charge, in consistent
with the hidden ZS+1 × ZS+1 symmetry argument.

In summary, we have shown that the hidden order in the VBS states can be characterized
by the generalized den Nijs–Rommelse-type SOPs. The maximization of these SOPs
automatically leads to spin-twist angles corresponding to ZS+1 rotations around z or x axes,
suggesting the existence of a hidden ZS+1 × ZS+1 symmetry. In the presence of the crackion
excitation, the maximized SOPs are shown to exhibit a ZS+1 topological charge. Recently,
it was shown that the den Nijs–Rommelse SOP is an effective measure of the localizable
entanglement in the S = 1 VBS state [17]. We believe that our maximized SOPs provide
a natural extension of the den Nijs–Rommelse SOP and can be used to explore multipartite
entanglement properties of arbitrary VBS states.
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